88 research outputs found

    N-cadherin and β1-integrins cooperate during the development of the enteric nervous system

    Get PDF
    AbstractCell adhesion controls various embryonic morphogenetic processes, including the development of the enteric nervous system (ENS). Ablation of β1-integrin (β1−/−) expression in enteric neural crest cells (ENCC) in mice leads to major alterations in the ENS structure caused by reduced migration and increased aggregation properties of ENCC during gut colonization, which gives rise to a Hirschsprung's disease-like phenotype.In the present study, we examined the role of N-cadherin in ENS development and the interplay with β1 integrins during this process. The Ht–PA–Cre mouse model was used to target gene disruption of N-cadherin and β1 integrin in migratory NCC and to produce single- and double-conditional mutants for these two types of adhesion receptors.Double mutation of N-cadherin and β1 integrin led to embryonic lethality with severe defects in ENS development. N-cadherin-null (Ncad−/−) ENCC exhibited a delayed colonization in the developing gut at E12.5, although this was to a lesser extent than in β1−/− mutants. This delay of Ncad−/− ENCC migration was recovered at later stages of development. The double Ncad−/−; β1−/− mutant ENCC failed to colonize the distal part of the gut and there was more severe aganglionosis in the proximal hindgut than in the single mutants for N-cadherin or β1-integrin. This was due to an altered speed of locomotion and directionality in the gut wall. The abnormal aggregation defect of ENCC and the disorganized ganglia network in the β1−/− mutant was not observed in the double mutant. This indicates that N-cadherin enhances the effect of the β1−integrin mutation and demonstrates cooperation between these two adhesion receptors during ENS ontogenesis.In conclusion, our data reveal that N-cadherin is not essential for ENS development but it does modulate the modes of ENCC migration and acts in concert with β1−integrin to control the proper development of the ENS

    Correlated Multimodal Imaging in Life Sciences:Expanding the Biomedical Horizon

    Get PDF
    International audienceThe frontiers of bioimaging are currently being pushed toward the integration and correlation of several modalities to tackle biomedical research questions holistically and across multiple scales. Correlated Multimodal Imaging (CMI) gathers information about exactly the same specimen with two or more complementary modalities that-in combination-create a composite and complementary view of the sample (including insights into structure, function, dynamics and molecular composition). CMI allows to describe biomedical processes within their overall spatio-temporal context and gain a mechanistic understanding of cells, tissues, diseases or organisms by untangling their molecular mechanisms within their native environment. The two best-established CMI implementations for small animals and model organisms are hardware-fused platforms in preclinical imaging (Hybrid Imaging) and Correlated Light and Electron Microscopy (CLEM) in biological imaging. Although the merits of Preclinical Hybrid Imaging (PHI) and CLEM are well-established, both approaches would benefit from standardization of protocols, ontologies and data handling, and the development of optimized and advanced implementations. Specifically, CMI pipelines that aim at bridging preclinical and biological imaging beyond CLEM and PHI are rare but bear great potential to substantially advance both bioimaging and biomedical research. CMI faces three mai

    The CryoCapsule : Simplifying Correlative Light to Electron Microscopy

    Get PDF
    Correlating complementary multiple scale images of the same object is a straightforward means to decipher biological processes. Light microscopy and electron microscopy are the most commonly used imaging techniques, yet despite their complementarity, the experimental procedures available to correlate them are technically complex. We designed and manufactured a new device adapted to many biological specimens, the CryoCapsule, that simplifies the multiple sample preparation steps, which at present separate live cell fluorescence imaging from contextual high-resolution electron microscopy, thus opening new strategies for full correlative light to electron microscopy. We tested the biological application of this highly optimized tool on three different specimens: the in vitro Xenopus laevis mitotic spindle, melanoma cells over-expressing YFP-langerin sequestered in organized membranous subcellular organelles and a pigmented melanocytic cell in which the endosomal system was labeled with internalized fluorescent transferrin

    EDAM-bioimaging : The ontology of bioimage informatics operations, topics, data, and formats

    Get PDF
    International audienceThe ontology of bioimage informatics operations, topics, data, and formats What? EDAM-bioimaging is an extension of the EDAM ontology, dedicated to bioimage analysis, bioimage informatics, and bioimaging. Why? EDAM-bioimaging enables interoperable descriptions of software, publications, data, and workflows, fostering reliable and transparent science. How? EDAM-bioimaging is developed in a community spirit, in a welcoming collaboration between numerous bioimaging experts and ontology developers. How can I contribute? We need your expertise! You can help by reviewing parts of EDAM-bioimaging, posting comments with suggestions, requirements, or needs for clarification, or participating in a Taggathon or another hackathon. Please see https://github.com/edamontology/edam-bioimaging#contributing. EDAM-bioimaging is developed in an interdisciplinary open collaboration supported by the hosting institutions, participating individuals, and NEUBIAS COST Action (CA15124) and ELIXIR-EXCELERATE (676559) funded by the Horizon 2020 Framework Programme of the European Union. https://github.com/edamontology/edam-bioimaging @edamontology /edamontology/edam-bioimagin

    Objective comparison of particle tracking methods

    Get PDF
    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers

    Septin6 and Septin7 GTP binding proteins regulate AP-3- and ESCRT-dependent multivesicular body biogenesis

    Get PDF
    Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies

    Bioimage informatics: Investing in software usability is essential

    No full text
    International audienceIn 2018, PLOS Biology announced CellProfiler 3.0, which has become one of the most used pieces of image analysis software in biology. The rapid adoption of this software speaks to the importance of user experience to disseminate new methods of bioimage informatics
    • …
    corecore